欢迎访问江苏省计算机学会网站!    设为首页  |  收藏本站
江苏省计算机学会
  •  当前位置首页 > 新闻中心 > 通知公告
    新闻中心  
    党建工作
    学会动态
    政策法规
    行业新闻
    图片新闻
    通知公告
    学会通讯
     
    通知公告
    技术创新论坛《SAVIOR: Towards Bug-Driven Hybrid Testing》
    发布时间:2019-10-31 13:59:26

    南京大学计算机科学与技术系软件新技术与产业化协同创新中心

    要:

    Hybrid testing combines fuzz testing and concolic execution. It leverages fuzz testing to test easy-to-reach code regions and uses concolic execution to explore code blocks guarded by complex branch conditions. As a result, hybrid testing is able to reach deeper into program state space than fuzz testing or concolic execution alone. Recently, hybrid testing has seen significant advancement. However, its code coverage-centric design is inefficient in vulnerability detection. We propose SAVIOR, a new hybrid testing framework pioneering a bug-driven principle. Unlike the existing hybrid testing tools, SAVIOR prioritizes the concolic execution of the seeds that are likely to uncover more vulnerabilities. Moreover, SAVIOR verifies all vulnerable program locations along the executing program path. By modeling faulty situations using SMT constraints, SAVIOR reasons the feasibility of vulnerabilities and generates concrete test cases as proofs. Our evaluation shows that the bug-driven approach outperforms mainstream automated testing techniques, including state-of-the-art hybrid testing systems driven by code coverage. On average, SAVIOR detects vulnerabilities 43.4% faster than DRILLER and 44.3% faster than QSYM, leading to the discovery of 88 and 76 more unique bugs, respectively. According to the evaluation on 11 well fuzzed benchmark programs, within the first 24 hours, SAVIOR triggers 481 UBSAN violations, among which 243 are real bugs.

    报告人简介:

    Shengjian Guo is a Security Scientist working for the Baidu Research InstituteSilicon Valley. His research focuses on automated software vulnerability detection and mitigation with program analysis techniques including symbolic/concolic execution, fuzz testing, formal verification,and constraint-solving based modeling and analysis. He earned a Ph.D. degree from the ECE Department of Virginia Tech, co-advised by Prof. Chao Wang and Prof. Michael Hsiao.

    时间: 112(星期六)11:00

    地点:计算机科学技术楼230

    上一篇:技术创新论坛《Abstract Interpretation under Speculative Execution》
    下一篇:青年学者学术报告《大数据可视化分析的挑战与机遇》
    友情链接:
    江苏省科学技术协会 中国计算机学会 南京大学 南京大学计算机科技与技术系 南京大学软件学院 东南大学计算机科学与工程学院 江苏经贸职业技术学院 南京信息职业技术学院 南京工业职业技术学院 江苏海事职业技术学院 常州信息职业技术学院 国网电力科学研究院 电子科技集团第28研究所 江南计算技术研究所 
       
     

    Copyright (c) 版权所有 江苏省计算机学会          南京网站建设公司
    秘书处办公室       地址: 江苏省南京市仙林大道163号  邮编:210023   电话/传真:025-89680909   
    秘书处市内联络点   地址: 江苏省南京市汉口路22号     邮编:210093   电话/传真:025-86635622
    电子邮箱:jscs@nju.edu.cn   网址:www.jscs.org.cn    技术支持:南京成旭通信息技术有限公司  

    网站备案号:苏ICP备14049275号-1

    您是本站第32046855位来客!