欢迎访问江苏省计算机学会网站!    设为首页  |  收藏本站
江苏省计算机学会
  •  当前位置首页 > 新闻中心 > 通知公告
    新闻中心  
    党建工作
    学会动态
    政策法规
    行业新闻
    图片新闻
    通知公告
    学会通讯
     
    通知公告
    学术报告 Causal Discovery and Prediction in the Presence of Distribution Shifts
    发布时间:2019-12-18 16:46:26

    南京大学计算机科学与技术系

    软件新技术与产业化协同创新中心

    摘 要:

    Many tasks in empirical sciences or engineering rely on the underlying causal information. As it is often difficult to carry out randomized experiments, inferring causal relations from purely observational data, known as causal discovery, has drawn much attention. Over the last few years, with the rapid accumulation of huge volumes of data, causal discovery is facing exciting opportunities but also great challenges. One feature such data often exhibit is distribution shift. In this talk, I will present a principled framework for causal discovery from such data, called Constraint-based causal Discovery from heterogeneous/NOnstationary Data (CD-NOD).

    In the second part of the talk, I will show how causal knowledge facilitates machine learning in the presence of distribution shifts, focusing on our two particular settings.  One is about specific and shared causal relation modeling and mechanism-based clustering. The other is about time-varying causal modeling and forecasting, where the causal coefficients follow dynamic models. Given the causal model, we treat prediction as a problem in Bayesian inference, which exploits the time-varying property of the data and adapts to new observations in a principled manner.

    报告人简介:

    Biwei Huang (黄碧薇) is a Ph.D. candidate at Carnegie Mellon University, supervised by Prof. Kun Zhang and Prof. Clark Glymour. Her main research interests include causal discovery, machine learning, and computational neuroscience. She is actively exploring theoretical implementations of causal discovery, how causal knowledge facilitates learning problems, and practical uses of causality in neuroscience, biology, etc.

    时间:12月20日星期五 14:00

    地点:计算机科学技术楼230室

    上一篇:学术报告Towards Quality Assurance of Deep Learning Systems
    下一篇:学术报告Collaborative Quantification and Placement of Edge Servers for Internet of Vehicles
    友情链接:
    江苏省科学技术协会 中国计算机学会 南京大学 南京大学计算机科技与技术系 南京大学软件学院 东南大学计算机科学与工程学院 江苏经贸职业技术学院 南京信息职业技术学院 南京工业职业技术学院 江苏海事职业技术学院 常州信息职业技术学院 国网电力科学研究院 电子科技集团第28研究所 江南计算技术研究所 
       
     

    Copyright (c) 版权所有 江苏省计算机学会          南京网站建设公司
    秘书处办公室       地址: 江苏省南京市仙林大道163号  邮编:210023   电话/传真:025-89680909   
    秘书处市内联络点   地址: 江苏省南京市汉口路22号     邮编:210093   电话/传真:025-86635622
    电子邮箱:jscs@nju.edu.cn   网址:www.jscs.org.cn    技术支持:南京成旭通信息技术有限公司  

    网站备案号:苏ICP备14049275号-1

    您是本站第32049502位来客!