南京大学计算机科学与技术系
软件新技术与产业化协同创新中心
摘 要:
Machine learning/deep learning has
achieved tremendous success in various application areas. Unfortunately, it
relies on huge high-quality labelled data and shows serious vulnerability to
adversarial examples. These issues dramatically hinder the deployment of
machine learning in practice, since most real-world data are easily imperfect
and corrupted. Therefore, in this talk, I will introduce our recent works on
trustworthy machine learning from a theoretical view of robust optimization,
including the reliability on noisy labels and the robustness against
adversarial examples.
报告人简介:
王奕森,北京大学信息科学技术学院,助理教授,博导。2018年博士毕业于清华大学计算机系,研究方向为机器学习,深度学习,在人工智能/机器学习领域顶级会议和期刊发表论文30余篇,包括ICML、NeurIPS、ICLR、CVPR、ICCV、ECCV、AAAI、IJCAI等。曾获得百度奖学金(全球共10位)、ACM中国优秀博士论文提名(全国共5位)等荣誉。
时间:11月9日
10:30-11:30
地点:计算机科学技术楼230室
|