欢迎访问江苏省计算机学会网站!    设为首页  |  收藏本站
江苏省计算机学会
  •  当前位置首页 > 新闻中心 > 通知公告
    新闻中心  
    党建工作
    学会动态
    政策法规
    行业新闻
    图片新闻
    通知公告
    学会通讯
     
    通知公告
    学术报告《 Data-Driven Control for Intelligent Systems: From Smart Grid to Robotics》
    发布时间:2020-12-15 10:41:17
     南京大学计算机科学与技术系

    软件新技术与产业化协同创新中心

    摘 要:

    Deep neural networks have proven to be successful in many identification tasks, however, from model-based control perspective, these networks are difficult to work with because they are typically nonlinear and nonconvex. Therefore, many systems are still identified and controlled based on simple linear models despite their poor representation capability. In the first part of the talk, I will introduce our recent work on bridging the gap between model accuracy and control tractability faced by neural networks, by explicitly constructing networks that are convex with respect to their inputs. We show that these input convex networks (ICNN) can be trained to obtain accurate models of complex physical systems. Experiment results demonstrate the good potential of the proposed ICNN approach in a variety of control applications. In particular we show that in the MuJoCo robotics locomotion tasks, we could achieve over 10% higher performance using 5× less time compared with state-of-the-art model-based reinforcement learning method; and in the building HVAC control example, our method achieved up to 20% energy reduction compared with classic linear models. Besides the complexity of system dynamics, physical systems often encompass a myriad of uncertainties that come from human behavior and the environment. In the second part of the talk, I will introduce a work in collaboration with DeepMind on learning reinforcement learning policies that are robust to perturbations in the environment dynamics. We propose a new data-driven algorithm for incorporating robustness into standard RL called Data-Driven Robust Maximum a-posteriori Policy Optimization (DDR-MPO). This algorithm first learns several transition models from the environment perturbation datasets, then incorporating the transition models into the simulator as an uncertainty set. We show that DDR-MPO outperforms standard RL algorithms in a variety of MuJoCo domains under different perturbed environments.

    报告人简介:

    石媛媛 (Yuanyuan Shi) 于2011-2015年就读于南京大学工程管理学院自动化专业,获得工程学士学位。2015-2020年于美国华盛顿大学西雅图分校(University of Washington, Seattle)电子及计算机工程学院获得博士学位,导师为Baosen Zhang。目前在加州理工学院跟随Anima Anandkumar与Adam Wierman进行博士后研究。将于2021年入职加州大学圣地亚哥分校 (UCSD)电子及计算机工程系担任助理教授。她的主要研究方向为智能控制, 机器学习及其应用在智能电网,物流以及机器人系统。她已在IEEE Transactions on Automatic Control, IEEE Transactions on Power Systems等国际期刊以及ICLR, NeurIPS, CDC, ACC等机器学习和控制会议上发表多篇论文。曾在Google DeepMind, 京东北美研究院等多处实习,以及获得由MIT授予的2018女性学术新星奖 (Rising Stars in EECS)。

    时间:12月18日 10:00-11:30

    腾讯会议ID: 832 554 424


    上一篇:青年学者学术报告 《Inventing New Sensing Modalities on Commodity Smartphones》
    下一篇:关于召开江苏省计算机学会计算机伦理与 职业修养专委会 2020 年学术年会和换届选举大会 第一轮通知
    友情链接:
    江苏省科学技术协会 中国计算机学会 南京大学 南京大学计算机科技与技术系 南京大学软件学院 东南大学计算机科学与工程学院 江苏经贸职业技术学院 南京信息职业技术学院 南京工业职业技术学院 江苏海事职业技术学院 常州信息职业技术学院 国网电力科学研究院 电子科技集团第28研究所 江南计算技术研究所 
       
     

    Copyright (c) 版权所有 江苏省计算机学会          南京网站建设公司
    秘书处办公室       地址: 江苏省南京市仙林大道163号  邮编:210023   电话/传真:025-89680909   
    秘书处市内联络点   地址: 江苏省南京市汉口路22号     邮编:210093   电话/传真:025-86635622
    电子邮箱:jscs@nju.edu.cn   网址:www.jscs.org.cn    技术支持:南京成旭通信息技术有限公司  

    网站备案号:苏ICP备14049275号-1

    您是本站第32055674位来客!